Security and Privacy
Summary

Isaac Metthez

1 Definition and Basics

1.1 Computer Security Definition

Computer security: Properties (defined by the security policy) of a computer system
must hold in the presence of a resourced strategic adversary (described by the threat
model).

1.2 Properties

1.3

Confidentiality: Prevent unauthorized disclosure of information
Integrity: Prevent unauthorized modification of information
Availability: Prevent unauthorized denial of service
Authenticity: Prevent unauthorized usage of other authenticity
Non-repudiation: Prevent denial of actions or message origin

Security Policy

Assets: Valuable objects (data, files, memory) to protect
Principals: Entities acting on (use
Policy: Defines required s y properties
Examples:
— Confidentiality: only authorized users read
— Integrity: only authorized programs write
— Availability: authorized services can access

sets

, program

TVices)
s and principals

linking

1.4 Resourced Strategic Adversary

Threat model: Defines adversary’s resources and capabilities (observe, influence,
corrupt). Adversary always uses optimal strategy.

1.5 Adversary Vocabulary

Threat model: Defines adversary’s
rupt machine, control employee
Vulnerability: Weakness exploitable by adversary, e.g., API unprotected, pass-
word in plain text

Threat: Feared event (goal of adversary), e.g., hacker steals money, student
learns password

Harm: Consequence when threat materializes, e.g., money stolen, access blocked,
password leaked

capabilitie

g.. observe connections, cor-

1.6 Securing a System

Ensure the security policy holds under the threat model.

Security mechanism: Technical control (software, hardware, crypto, people)
preventing policy violation

Security argument: Shows mechanisms are effective under the model (must
ry)

Composition: Defense in depth (ok if > 1 holds), weakest link (fail if one fails)

constrain adver:

Asymmetry between attackers and defenders An attacker only needs to find
one way to violate one security property within the threat model. A defender must prove

that no adversary can violate the security policy. A s

rstem is "secure” if an adve

rsary

constrained by a specific threat model cannot violate the security policy.

2

2.1

3

—

I

w

'S

@

=

-1

3

. Open design: "The design should not be s

. Least privilege: "Ever

. Least common mechanism

Security Mechanisms

Eight Base Mechanisms

Economy of mechanisms: "Keep the design as simple and small as possi-
ble" - Simple designs reduce the Trusted Computing Base (TCB) and are e
to audit and verify.

. Fail-safe defaults: "Base access decisions on permission rather than exclu-

sion" - Default to secure state when failures occur. Use whitelists over blacklists

. Complete mediation: "Every access to every object must be checked for

authority" - A reference monitor must mediate all actions from subjects on objects
and verify them against current access permi

ret " - Security mechanisms should

not depend on the secrecy of their design. Only keys, passwords, or specific noise

patterns should be kept secret (Kerckhoff’s principle).

. Separation of privilege: "No single accident, deception, or breach of trust

is sufficient to compromise the protected information' - Require multiple con-
ditions to execute an action (e.g., two-factor authentication, two keys for safe).
program and every user should operate using the
least set of privileges necessary to complete the job" - Rights should be added
only as needed and discarded after use (need-to-know principle).

"Minimize the amount of mechanism com-
mon to more than one user” - Every shared mechanism represents a potential
information path. Minimize shared mechanisms to prevent unintended informa-
tion leaks or privilege abuse.

. Psychological acceptability: 'The human interface must be designed for

ease of use" - Users must routinely and automatically apply protection mecha-
nisms correctly. The mental model of users must match the security policy.

Access Control

Check that all accesses and actions on objects by principals are within the security
policy. First line of defense. Authentication binds an actor to a principal (not seen
here). Authorization checks that the principal is authorized.

3.1 Discretionary Access Control (DAC)

Object owners assign permi:

ions (Facebook, Strava, Linux).

3.1.1 Access Control Matrix

Abstract model describing all authorized (subject, object, right) triplets in a system.

Subject/Object | filel | file2 | file3
Alice W - T
Bob W

W -

Conceptual model, not practical for large systems (sparse, inefficient).

3.1.2 Access Control Lists (ACLs)

Store permissions with objects
Each object lists which subjects can access it and with what rights

Example:

« filel: {(Alice, r/w)}
« file2: {(Bob, r/w)}
« file3: {(Alice, r), (Bob, r/w)}

Advantages

« Easy to check who can access a given object
« Easy to revoke access to a specific object

Drawbacks
« Hard to list all accesses of one user
« Hard to remove all rights from a user (must scan all ACLs)
« Delegation and auditing more complex

3.1.3 Capabilities

« Store permissions with subjects
« Each subject lists which objects it can access and how

Example:
« Alice: {(filel, r/w), (file3, r)}
« Bob: {(file2, r/w), (file3, w)}
Advantages
« Easy to audit or delegate (subject carries its capabilities)
« Portable and flexible
Drawbacks

« Hard to revoke one object’s rights once shared
« Risk of capability leakage or uncontrolled transfer
« Authenticity must be ensured (non-forgeable tokens)

3.1.4 Role-Based Access Control (RBAC)

« Permissions are
o Us

igned to roles, not users directly

s get permissions through the roles they hold

« Common in organizations (doctor, admin, student, etc.)

2. Assign roles to users

3. User activates one or more roles — inherits role permissions

Problems
« Role explosion: too many fine-grained roles
« Least privilege: hard to maintain minimal rights
« Separation of duty: ensuring distinct users for critical actions
3.1.5 Group-Based Access Control
« Permissions grouped by access need, subjects grouped by membership
« Subjects inherit rights from all groups they belong to
« Simplifies ACLs and management for similar users
Notes
« Groups = coarse-grained roles

« May include negative permissions to restrict exceptions

3.1.6 Ambient Authority & Confused Deputy Problem

+ Ambient authority: Programs use implicit subject identity (c.g.. process

owner) — program actions automatically use its full privileges

Confused deputy
« Program with authority acts on behalf of a less-privileged user
« User manipulates program to perform unauthorized actions
3.1.7 Linux (UNIX) Access Control
« Principals: Users (UID), Groups (GID)

« Everything is a file: Each file has an owner, group, and mode bits (r,wx)

« 3 sets of bits: Owner (u), Group (g), Other (o)

rwx | File meaning | Dir meaning | Example
r | read file list contents “Is”
w | modify file add/delete files | “touch”
x | execute file enter dir “ed”

Access order

1. If UID == owner — check owner bits
2. Else if GID matches — check group bits
3. Else — check “other” bits

Special bits

: run with file owner’s privileges (needed for /bin/passwd)

y bit: only the owner can delete in shared directories (/tmp)
« root (UID 0): bypasses checks — in sted Computing Base (TCB)

Example: s -1 output (Linux)

drwxrwxr-x 2 caasi devs 4096 Nov 2 12:10 project/
-rv-r--r-- 1 caasi devs 1200 Nov 2 12:05 report.txt
-rwsr-xr-x 1 root root 27768 Aug 20 2020 /bin/passwd

« 1st character: file type (d=directory, -=file)

« Next 9: permissions (owner/group/other)

s inrws — setuid bit (runs as owner)

« tat end — sticky bit (only owner can delete in shared dir)

Interpretation example
« report.txt: owner can read/write; group can read; others can read
« project/: owner & group can list /create; others can read & traverse
« /bin/passwd: executable running with root privileges (sctuid)

3.2 Mandatory Access Control (MAC)

Central security policy assigns permissions (Military, Hospital, etc.)

3.2.1 Bell-LaPadula (BLP) Model

Focus on confidentiality. Too low level, not expressive, does not ensure confidentiality
because of covert channels. Each object has one label and belongs to one or more
categories.

Label: Unclassified, confidential, secret, etc.
Categories: Nuclear, army. crypto, etc.

Dominance: Security level (I1, ¢;) dominates (ly, ¢2) iff Iy > I and ¢, C ;.

Three Core Properties

ss-property (Simple Security): 'No Read Up (NRU)"

Subject can read object only if level(.S) dominates level(O)

*-property (Star Property): 'No Write Down (NWD)"

Subject can write to Oy only if level(O,) > level(Oy) (prevents info leak to lower
levels)

ds-property (Discretionary Security): Need-to-know within same level

Access (S, O, action) must be authorized in access control matrix: (S, O, action) €

M

Actions Read, write, execute, append

Covert Channels

Declassification Controlled lowering of cla

Unintended communication paths violating security policy:

Storage channels: shared resources (file IDs, counters, disk space)

Timing channels: CPU time, cache state, response delay variations
Mitigation: isolation (prevent shared resources), noise injection (randomize
timing)

Complete elimination infeasible; typical reduction to < 1 bit/s (insufficient for
crypto keys)

sification level for document rele:

Risks: covert channels, residual data in metadata (Word revision history, PDF hid-
den text).

3.2.2 BIBA Model

Focus on integrity. Dual of Bell-LaPadula

Two Core Properties

Simple Integrity Property: 'No Read Down'

Subject can read object only if level(S) < level(O)

Prevents high-integrity subjects from being corrupted by untrusted data
*-Integrity Property: "No Write Up'

Subject can write object only if level(S) > level(O)

Prevents low-integrity subjects from contaminating trusted data

Actions Read, Write, Invoke

Biba Variants Low-water-mark for subjects: Subjects downgraded when
reading lower-integrity data

current(S) := min(current(S), level(O)) when reading
Temporary sandbox, avoids high-level contamination
Risk: label creep (everything becomes low integrity over time)

Low-water-mark for objects: Objects downgraded when written by lower-integrity
subjects

Invocation: Allow controlled cra

level(O) := min(level(O), level(S)) when writing
Detects but does not prevent integrity loss
Mitigation: replicate, sanitize or delete polluted copy

s-level interaction

Simple invocation: level(Sy) > level(Sy) (high — low)
Protects high data, unclear output level

Controlled invocation: level(S;) > level(S)) (low — high)
High acts as gatekeeper, hard to verify integrity flows

3.2.3 Chinese Wall Model

Prevent conflicts of interest

Each object has a label of origin (compan:
Conflict sets group competing entities
Each subject has a history of access

A subject can access an object (read/write) only if it does not create an informa-
tion flow between two objects in the same conflict set

client, etc.)

Analyst 1 Analyst 2

Conflict Set

Figure 1: Chinese Wall Model: Analysts who access data from one company in a conflict
set cannot access competing companies’ data

4.2

Example: An analyst who accessed Pepsi data cannot later access Coca-Cola
data

Applied Cryptography
Core Goal

Confidentiality: Ensure Eve (adve
nel

Plaintext (M): Original message
Ciphertext (C): Encrypted message

Key (K) Secret controlling (‘ll(‘l’_\'ptl()ll/(lct‘l’)'p[l()ll

Encryption: C = Ex(M)

Decryption: = Dg(C)

Invertibility: Dy (Ex(M)) = M

Security requirement: Without K, decryption must be computationally in-
feasible

y) cannot read data over insecure chan-

Hardness & Key Space

Brute force: Try all possible keys

Bits of security: log,(|keyspace|)

Example: Cacsar cipher — 25 keys — 4.6 bits — insccure

Substitution cipher: 26! &~ 4 x 10% keys (= 88 bits) — still breakable via
frequency analysis (statistical attack)

Cryptanalysis: Exploiting structure or frequency of plaintext to reduce key
search space

4.3 Key Terms

« Encryption algorithm: Deterministic or randomized transformation param-
eterized by K

« Decryption algorithm: Inverse function using K

« Key space: All possible keys, defines theoretical security upper bound

« Security level: Effort (2" operations) required for best known attack

5 Adversary Types

5.1 Passive Eavesdropper

Eve only reads ciphertext — limited model (e.g., substitution cipher)

5.2 Known Plaintext Attack (KPA)

+ Eve knows pairs (M, C' = Eg(M)) — infers key patterns

+ Realistic: headers or predictable data leak info (e.g., “From:” field)
5.3 Chosen Plaintext Attack (CPA)

« Eve can choose messages and get encrypted outputs (encryption oracle)
« Stronger than KPA — full break for substitution cipher (choose “abcdefghi-
jklmnopgrstuvwxyz”)

5.4 Side-Channel Attacks

« Exploit phy:
netic leaks
« Common on devices holding third-party keys (e.g., smart cards, DRM)

al information during encryption: timing, power use, electromag-

6 One-Time Pad (OTP)

6.1 Principle

« Key = truly random bits, same length as message
« Encryption: C'= M & K Decryption: M =C & K
« Guarantees perfect secrecy: C gives zero information about M

6.2 Conditions for Perfect Secrecy
Key must be: random, as long as message, used only once.

Reusing key — breaks secrecy (Cy & Co = My & M,).

6.3 Integrity Flaw

« OTP ensures confidentiality only
« Bit-flip in ciphertext flips same bit in plaintext — no integrity protection

6.4 Practical Limitation

« Key distribution problem: hard to securely share large random keys
« OTP ideal but impractical for real-world use

7 Stream Ciphers

7.1 KSG Principle

A stream cipher mimics OTP: it generates a pseudo-random stream S = KSG(K, IV)
from a secret key K and a public IV.

Both sides recompute the same S to encrypt/decrypt with XOR

The IV changes for each message so S differs every time, avoiding key reuse
Knowing IV or the KSG algorithm does not reveal K if the cipher is secure
Reusing IV or breaking K compromises all messa

ges

7.2 Idea

Emulate OTP using short key + keystream generator (KSG)
Inputs: secret key K + public IV — pseudo-random stream S
Encryption: C' = M @& S; Decryption: same operation

7.3 Properties

Symmetric key: same K for encryption/decryption
TV: ensures two messages use different keystreams
Security: S must be computationally indistinguishable from random

7.4 Pros / Cons

Pro: Fast, low memory, low error propagation

Cons: Low diffusion — bit-level tampering easy (no integrity)
Cons: Vulnerable if keystream repeats (periodicity)

7.5 Attacks & Flaws

Finite KSG state — eventually periodic stream
Short period = pattern repetition = message recovery
Linear designs (e.g., LFSR) predictable — broken (A5/1 GSM)

8 Public Key Cryptography
8.1 Diffie-Hellman Key Exchange

« Solve key distribution: allow two parties to agree on a shared secret over an
insecure channel

« Public parameters: prime p, generator g

« Alice — picks a, sends A = ¢* mod p

« Bob — picks b, sends B = ¢’ mod p

« Shared secret: K = ¢g" mod p = (B* = A" mod p)

« Eve knows (A, B, g, p) but cannot recover a,b — Discrete Log Problem

8.2 Security & Limits

« Security = hardness of computing discrete log

« Provides key agreement, not authentication — vulnerable to man-in-the-middle

« Solution: add digital signatures or certificates (CA) to verify identities

« Examples of related systems: RSA (factoring), ECC (elliptic-curve discrete log),
post-quantum (lattice)

9 Authenticity
9.1 Public Key Cryptography

+ Each user owns public key (PK) and secret key (SK)
« Anyone can encrypt with PK — only SK decrypts
« Enables confidentiality without shared secret

Needs trusted Public Key Infrastructure (PKI) to bind identities to keys

9.2 Digital Signatures
1)

Sign: S = Signg
Verify: Verifyp (M, S) — true if valid

Ensures authen v, integrity, and non-repudiation
Forgery infeasible without SK

9.3 Hash-Based Signing

Instead of signing M directly, sign H(M) (faster, smaller)
Required hash properti
— Second pre-image resistance: can’t find M’ # M with same hash
— Collision resistance: can’t find any (M, M') with same hash
Pre-image resistance less critical (M often public)

9.4 Hash Functions

Input any length — fixed short digest
Core properti
— Pre-image: given H, can't recover M
— Second pre-image: given M, can’t find M with same H
— Collision: can’t find any pair I') with same H
Use: SHA-2, SHA-3. Avoid MD5, SHA-1
Applications: signatures, HMACs, password storage, integrity checks

10 Block Ciphers
10.1 Principle

« Process data in fixed-size blocks (e.g., 128 bits)

« Use same secret key K for encryption and decryption
« Deterministic mapping: C' = Ex(M), M = Dg(C)
« Example: AES (Advanced Encryption Standard)

10.2 Goal & Limitation

« Acts like a permutation over all possible blocks

« Deterministic — same plaintext block = same ciphertext = pattern leaks
« Solution: use modes of operation with randomization (IV)

10.3 Block Cipher Modes
10.3.1 ECB - Electronic Code Book
« Encrypt blocks independently: C; = E(M;)

« Leaks identical patterns (e.g., image structure)

10.3.2 CBC - Cipher Block Chaining

Plaintext
n]) [®] [#]
®
=] (=] [
J l |
][] o]
Ciphertext

« Adds diffusion with XOR chaining
« Hides patterns, needs random IV
« Sequential encryption (not parallelizable)

10.3.3 CTR — Counter Mode

Counter
‘ Nonce + 1 ‘ ‘ Nonce + 2‘ ‘ Nonce + 3‘
‘ Ex ‘ ‘ Ex ‘ ‘ Ex ‘
Plaintext ‘ Py @ ‘ Py ‘ Py
e] [&] [4]
Ciphertext

am cipher
requires unique nonce per key
« Same nonce reuse = catastrophic (Cy & Cy = My & M), like OTP reuse

« Turns block cipher into
« Parallelizable, random a

10.3.4 Summary
« ECB: insecure, reveals structure
- CBC
« CTR:

ecure if IV random; sequential
ast, parallel, secure if nonce unique

11 Authenticated Encryption & Integrity
11.1 Why Authentication Matters

«+ Confidentiality alone # security
« Need to detect if ciphertext was modified (tampering, replay)
« Combine encryption + integrity protection

11.2 MAC — Message Authentication Code

« Symmetric integrity check: Tag = MACg (M)

« Verification: recompute MACg (M) and compare

« Detects modification and confirms origin (shared key)
« No third-party proof (no non-repudiation)

« Examples: HMAC-SHA256, CMAC-AES

11.3 Authenticated Encryption (AE)
Single scheme ensuring confidentiality + integrity.
Common designs:

« Encrypt-then-MAC: Encrypt first, then authenticate ciphertext — secure
(modification detected before decryption)

« Encrypt-and-MAC: Process done independently — weak, integrity not linked
to ciphertext; some attacks possible if verification skipped

« MAC-then-Encrypt: Encrypts both message and tag — weak, attacker can
modify ciphertext and mislead error handling (e.g., old TLS)

11.4 Why Encrypt-then-MAC is Best

« Verify integrity before decryption — reject tampered ciphertext early

« Prevents padding oracle attacks, chosen-ciphertext attacks

« Generic composition works with any secure encryption + MAC

« Modern modes (GCM, CCM, ChaCha20-Poly1305) implement this principle

12 Public Key Infrastructure (PKI)
12.1 The Key Distribution Problem

« Public key cryptography enables encryption/signatures without shared secrets
« Problem: How to trust that a public key belongs to the claimed identity?

« BExample: Alice receives PK g claiming to be Bob’s key. How does she verify?
« Without verification — Man-in-the-Middle attacks possible

12.2 Certificates & Certificate Authorities (CA)

Certificate: digitally signed statement binding identity to public key

Certificate structure

« Subject name

>.g., "alice@example.com’ or "www.bank.com')
« Subject’s public key (PK)
« Validity period (not before / not after dates)

« Issuer (CA) name

« CA’s digital signature: Signgy,,, (H (certificate data))

Certificate Authority (CA)

« Trusted third party that verifies identities and issues certificates
« CA’s public key (PK¢.) is widely known and trusted
+ Anyone can verify certificate: Verifypg,, (cert, signature)

12.3 Certificate Chains & Trust Hierarchy

« Root CA: Top-level CA, self-signed certificate

« Intermediate CA: Issued by Root CA 1es end-entity certificates
« End-entity certificate: Issued to us rvers/devices

« Chain verification: End-entity < Intermediate < Root

« Browsers/OS pre-install trusted root CA certificates

12.4 PKI Security Properties

« Authenticity: Certificates bind verified identities to public keys
« Integrity: Signatures prevent certificate tampering

« Trust anchor: Security relies on protecting root CA private keys
« Weakest link: Compromise of any CA in chain breaks trust

13 Password Security

13.1 Storing Passwords
Correct approach: Hash + Salt

Generate random salt s for each user

Store (s, H(password||s))

Verification: recompute H (input||s) and compare

Salt prevents rainbow tables: each user has different hash even with same
password

Salt can be public (stored with hash)

13.2 Password Attacks

«+ Dictionary attack: Try common passwords (123456, password, qwerty)
« Brute-force: Try all possible combinations (slow with berypt/Argon2)

« Credential stuffing: Reuse leaked passwords from other breaches

« Phishing: Social engineering to steal credentials directly

« Timing attacks: Measure comparison time to leak password length

13.3 Password Strength

« Entropy: log,(possible passwords)

« Example: 8 random chars (a-z, A-Z, 0-9, symbols) & 52 bits

« Trade-off: entropy vs memorability

« Passphrases: 'correct horse battery staple' — high entropy, memorable
« Best practice: password managers generate & store random passwords

14 Man-in-the-Middle (MITM) Attack
14.1 Diffie-Hellman Vulnerability

Key observation: DH provides key agreement but NOT authentication

The Attack
1. Alice sends A = g* mod p to Bob
2. Eve intercepts, sends £y = ¢ mod p to Bob (pretending to be Alice)
3. Bob sends B = ¢* mod p to Alice
4. Eve intercepts, sends E = g”> mod p to Alice (pretending to be Bob)
5. Alice computes shared key with Eve: Kyp = E§ = ¢*? mod p
6. Bob computes shared key with Eve: Kpg = E? = ¢g*' mod p
7. Eve controls all traffic: Alice £45 Eve £25 Bob

14.2 Consequences

« Eve decrypts all messages from Alice, re-encrypts for Bob (and vice versa)
« Neither Alice nor Bob detect the attack

« Eve can read, modify, or block any message

« Complete confidentiality breach despite using DH!

15 Authentication (Detailed)

15.1 Authentication Factors

« What you know: Passwords, PINs, secret keys
« What you are: Biometrics (fingerprint, face, iris)

« What you have: Tokens, smart cards, phones
« Where you are: Location, IP address

15.2 Secure Password Transfer

« Problem: Passwords intercepted over network

+ Solution: TLS/HTTPS (combines DH + signatures + hybrid encryption)

« Replay attack: Eve captures encrypted message, replays it later

15.3 Challenge-Response Protocol

1. Alice: 'T want to login"

2. Ser s random challenge R (nonce)
3. Alice: sends Ej.(password, R)

4. Server: verifies, deletes R

gener:

Why it works: Each R used only once — captured responses useless

15.4 Password Storage
Salted Hashes (Correct)

« Generate random salt s per user

« Store (s, H(password|s))

« Salt prevents rainbow tables: same password — different hashes
« Salt can be public

« Use slow hash: berypt, Argon2, PBKDF2

Dictionary Attacks

« Attacker tries common passwords: '123456", "password"
« Precomputed rainbow tables accelerate attack
« Defense: Slow hash functions, rate limiting

15.5 Biometric Authentication

« FAR (False Accept Rate): Adversary accepted

« FRR (False Reject Rate): Legitimate user rejected

o Trade-off: Lower FAR = Higher FRR

« Problems: Cannot revoke, privacy concerns, probabilistic

15.6 Time-Based One-Time Passwords (TOTP)

o = HMACueea(|T/X)
X =30)

+ Generate time-varying code
« New code every 30 seconds

(

+ Must use HMAC: Hash alone allows adversary to predict v,.1 = H(v,)

« HOTP: Counter-based variant

15.7 Two-Factor Authentication (2FA)
« Requires two different factor types
« Examples: Password + SMS, Password + App code, Card + PIN
« Benefits: Compromising one factor insufficient
« SMS risks: SIM swapping, interception
« App-based: More secure (TOTP locally generated)

16 Network Security

16.1 Four Network Security Properties

1. Naming: IP-domain bindings not influenced by adversary
2. Routing: Message delivery not influenced by adversary

3. Session: Message ordering/integrity maintained

4. Content: Messages confidential and unmodified

16.2 ARP Spoofing
Background
+ ARP translates IP — MAC addresses on LAN
« No authentication, accepts unsolicited replies
Attack

« Send fake ARP reply: "Bob’s IP = Attacker’s MAC"
« Victim sends traffic to attacker

+ Man-in-the-Middle: Spoof both Alice and Bob
+ DoS: Provide invalid MAC address

Defense

« Static ARP entries (doesn’t scale)

« ARP spoofing detection software (ArpWatch, XArp)
« Monitor for IP-MAC conflicts

16.3 DNS Spoofing

DNS Cache Poisoning

« Attacker floods resolver with fake responses

« If fake response arrives before real one — cached

« Must guess transaction ID (16 bits ~ 65k possibilities)

- Kaminsky attack: Query many subdomains to increase chan

DNSSEC Defense

« Digitally sign DNS records

« Chain of trust from root to leaf

« Prevents cache poisoning

« Limitation: Adoption still incomplete

16.4 BGP Hijacking

+ BGP announces routes without authentication

« Attacker announces shorter/more specific route

« Traffic routed through attacker

« Defense: BGPsec (cryptographic verification), route filtering

16.5 TCP Session Hijacking

Attack

« Predict sequence numbers
« Inject packets into existing connection
« Take over session

Defense

« Random initial sequence numbers
« Use TLS (encrypts + authenticates)

16.6 TLS (Transport Layer Security)

« Provides: authentication, confidentiality, integrity

+ Handshake: DH key exchange + certificate verification
« Record protocol: Encrypt-then-MAC data transfer

« Defends against: cavesdropping, tampering, MITM

16.7 Denial of Service (DoS)
SYN Flood

« Send many TCP SYN packets (connection requests)

« Server allocates state, waits for ACK (never comes)

« Server memory exhausted

« Defense: SYN cookies (stateless until ACK received)

DDoS

« Distributed attack from many sources (botnet)
« Overwhelms bandwidth or server capacity
« Defense: Traffic filtering, CDN, over-provisioning

16.8 Firewalls

Types

« Stateless (packet filter): Inspect cach packet independently
« Stateful: Track connection state (TCP/UDP sessions)
« Application (Deep Packet Inspection): Inspect content

Limitations

« Cannot authenticate principals

« Cannot filter encrypted traffic (without decryption)
« Not a substitute for host security

« Filter "definitely bad" traffic, not "allow only good"

DMZ (De-Militarized Zone)

« Three zones: WAN — DMZ — LAN
« Public services in DMZ

« Inner firewall protects LAN
« Defense in depth: Compromise of DMZ doesn’t expose LAN

17 Web Security
17.1 HTTP Basics

« Stateless: Each request independent

« GET: Retrieve data (parameters in URL)

« POST: Send data (parameters in body)

« Cookies: Store session state

« Ambient authority: Cookics automatically included in requests

17.2 Same Origin Policy (SOP)

« Origin = (protocol, host, port)

« Scripts can only access data from same origin

« Does NOT prevent CSRF: Cookies sent regardless of origin
« SOP only prevents reading cross-origin responses

17.3 SQL Injection
Vulnerability

$query = "SELECT * FROM users WHERE name='" . $_GET['nmame'] . "'";
Input: > OR ’1°="1
Result: SELECT * FROM users WHERE name=" OR ’1’=’1’

Defense

+ Parameterized queries: prepare ("SELECT * FROM users WHERE name=7")

« Never concatenate user input into SQL
« Input validation (whitelist allowed characters)

17.4 Cross-Site Scripting (XSS)
Reflected XSS

« User input echoed directly in response
« Example: search.php?q=<script>steal_cookies()</script>

« Script executes in victim’s browser

Stored XSS

« Malicious script stored in database (e.g., comment)
« Served to all users viewing page
« More dangerous than reflected

Defense

« Output encoding: Escape HTML special chars (<, >, ")
« Content Security Policy (CSP): Restrict script sources
« HTTPOnly cookies: Prevent JavaScript access

17.5 Cross-Site Request Forgery (CSRF)
Attack

Victim logged into bank. com
Victim visits evil.com
evil.com triggers POST to bank.com/transfer

Browser includes bank. com cookies

U o

Transfer executes with victim’s authority

Defense

« CSREF tokens: Include unpredi
« SameSite cookies: SameSite=Strict/Lax
« Check Referer/Origin header

+ Re-authenticate for critical actions

able token in forms

17.6 Command Injection

« User input passed to shell command

« Example: system("ping " . $_GET[’ip’])

« Input: 8.8.8.8; rm -rf /

« Defense: Never pass user input to shell, use APIs directly

18 Software Security

18.1 Memory Layout

Segment Contents

Stack Local vars, return addresses (LIFO)
Heap Dynamic allocation (malloc)

BSS Uninitialized globals

Data Initialized globals

Text Code (read-only)

18.2 Buffer Overflow
Stack Buffer Overflow

void vulnerable(char *input) {
char buffer [64];
strepy(buffer, imput); // No bounds check!

Exploit: Input > 64 bytes overwrites return address

Consequences

« Overwrite return address — control execution
« Overwrite function pointers
« Inject shellcode

18.3 Format String Vulnerability

princt (user_input) ;

Input: %x %x %x — leaks stack contents
Input: %n — writes to memory

Defense

printf(user_input);

18.4 Use-After-Free

char *p = malloc(10);
free(p)

p= A

Exploit: Allocate new object, control freed object’s contents

18.5 Mitigations
DEP (Data Execution Prevention) / WX

ither writable OR executable, not both
« Prevents code injection
« Bypass: Return-Oriented Programming (ROP)

« Memory

ASLR (Address Space Layout Randomization)

« Randomize stack/heap/library addresses
« Attacker cannot predict addresses
« Bypass: Information leaks reveal addresses

Stack Canaries

« Place random value before return address

« Check canary before function return

« Detects buffer overflow

« Bypass: Leak canary value, overwrite with same value

18.6 Fuzzing
Goal

« Automatically generate test inputs
« Find crashes/bugs

Coverage-Guided Fuzzing

. Execute program with input,
Measure code coverage

. If new coverage — save to corpus

. Mutate corpus inputs

. Repeat

Gl N

Tools: AFL, LibFuzzer, Honggfuzz

18.7 Sanitizers
AddressSanitizer (ASan)

« Detects: buffer overflows, use-after-free, double-free

red zones around objects

wdown
« Compile: ~-fsanitize=address

UndefinedBehaviorSanitizer (UBSan)

« Dete
« Only

« Compile: ~-fsanitize=undefined

integer overflow, null pointer, division by zero
sanitizer usable in production

19 Privacy

19.1 Definitions

« Freedom from intrusion: 'Right to be let alone"

« Autonomy: Freedom from unreasonable constraints on identi
« Control: Informational self-determination

« Privacy # Secrecy (context-dependent)

19.2 Privacy IS a Security Property

« Individuals: Protection against profiling, manipulation, identity theft
« Companies: Trade secrets, business strategy, competitive intelligence
« Governments: National scc
« Shared infrastructure: Denying privacy to some = denying to all

et

aw enforcement, diplomatic activi

Privacy vs Security False Dichotomy Common misconception that privacy

and security are opposed. Reality:

Surveillance is ineffective (sophisticated adversa

ies evade it)
Surveillance tools can be abused (NSA, Spanish ministry)

ploited to monitor 106 people)

19.3 Three Categories of Privacy Enhancing Technologies

(PETs)
19.3.1 Category 1: Social Circle Adversary

« Concerns: "My boss knows I'm job hunting", "My parents saw my pictures"

-onstruction

Surveillance tools can be subverted (Greek Vodafone 2004-2005: backdoors ex-

« Goals: Don't surprise user (contextual feedback, privacy nudges. e faults)
« Limitations: Trusted service provider required, user exp
« Industry approach: Facebook, Twitter, LinkedIn (make users

19.3.2 Category 2: Institutional Privacy (GDPR)

« Concerns: Data collected without consent, illegitimate processing
« Goals: Compliance with data protection principles
— Informed consent, purpose limitation, data minimization
— Subject access rights, security, auditability
« Technical measures: Access control, logging, anonymization (limited!)
« Limitations: Trusted provider, never questions collection necessity
« Anonymization myth: No magic solution for perfect anonymization with full
utility

19.3.3 Category 3: Anti-Surveillance (Network-Level)

« Concerns: Infrastructure-level disclosure, censorship, surveillance
« Goals: Minimize default disclosure, minimize trust requirements
« Limitations: Narrow designs, usability problems, no industry incentives

19.4 Metadata & Traffic Analysis

Key Insight: "Metadata absolutely tells you everything. If you have enough metadata,
you don’t really need content.” - Stewart Baker (NSA)

Traffic Analysis Deducing information from communication patterns (not content):

« Identities, timing, frequency, duration, location, volume, device
« Military origins: WWTI (locate submarines), WWII (assess forces)
« Modern: Tempora, MUSCULAR, XKeyscore focus on metadata

Network Protocol Headers Even with encryption, headers reveal:

« IPv4: Source/destination IP, packet length, TTL, protocol

« Same for Ethernet, TCP, SMTP, IRC, HTTP

« Address leakage: Storage location reveals content (medical DB example)
« Location leakage: Sending from oncology clinic reveals sender info

Browser Fingerprinting

« Screen resolution, fonts, timezone,

ser agent, plugins, canvas/WebGL
« AmIUnique.org: Most users uniquely identifiable without cookies

19.5 End-to-End Encryption
« True E2E: Only sender/receiver decrypt (Signal, WhatsApp)
« Not E2E: Provider can decrypt (Gmail, Outlook)
« Provides confidentiality, integrity, authenticity, forward secrecy
« Limitation: Protects content, NOT metadata
19.6 Anonymous Communications
19.6.1 Use Cases
Journalists, whistleblowers, activists, executives, military, abuse victims, ordinary users

avoiding tracking

19.6.2 Abstract Model

Adversary: ISPs, sysadmins, intelligence agencies, network operators
Protect: Sender/receiver IDs, timing, volume, frequency, relationships

1996)
Solutions: Bitwise unlinkability (crypto), (re)packetizing, (re)scheduling, (re
load balancing

19.7 Tor (The Onion Router)
How It Works

1. Select path: 3 relays (entry guard, middle, exit)
2. Prepare circuit: Authenticated DH with each relay
3. Send stream: Encrypt in layers, each relay removes one

Properties

« Entry sees client, exit sees destination, middle sees neither
+ Overlay network at application layer (not internet routers)
« Traffic through regular internet between relays

Limitations

« Assumes: Adversary cannot observe both circuit ends

« Global passive adversary: Can correlate entry/exit traffic

« Exit relay monitoring: Sees unencrypted traffic, can inject/modify
« Circuit compromise: Controlling entry+exit enables correlation

« Low latency prioritized over maximum anonymity

VPN

« Protects: Confidentiality from ISP, IP hiding, geo-restrictions
« Does NOT protect: Anonymity from VPN, traffic analysis, legal jurisdiction
« Key: Centralized trust -~ VPN sees everything

19.8 Application-Layer Anonymity

Network anonymity insufficient
cookies, fingerprinting)

application behavior reveals identity (logins, emails,

19.8.1 Anonymous Credentials (Attribute-Based)
Prove attributes without revealing identity: 'I'm subscribed to CNN" not 'T am user X'

PKI (Traditional)

Anonymous Creden-
tials

Signed by trusted issuer | Signed by trusted issuer
Certification of at-| Certification ~ of at-

tributes tributes
Authentication via secret | Authentication via secret
key key

No data minimization Data minimization

Users identifiable Users anonymous
Unlinkable

texts

Linkable across contexts across con-

Cryptographic Guarantees Server cannot: (1) identify user, (2) learn beyond
disclosed attributes, (3) distinguish users with same attributes, (4) link multiple uses

Technical : Zero-knowledge proofs, blind signatures, commitment schemes

Single proxy problems: Low throughput, single failure point, coercion (Penet.fi

19.9 Other PETs

Private Set Intersection (PSI): Compute intersection without revealing
sets (private search)

Blind Signatures: Server signs without seeing message (eCash)

Secure Multiparty Computation (MPC): Joint computation keeping in-
puts private (hospital statisti
Private Information Retrieval (PIR): Query database without revealing
query

19.10 Privacy Quantification

No Free Lunch Theorem (Kifer & Machanavajjhala, 2011) For every
algorithm with even a sliver of utility
such that privacy is NOT guaranteed.

y. there exists some adversary with prior knowledge

Implications

« Perfect privacy + full utility = impossible

« Privacy guarantees depend on adversary model & prior knowledge
« Data minimization most effective protection

« All techniques involve utility trade-offs

19.11 Key Principles

. Privacy IS a security property (individuals, companies, governments)
. Privacy # Security trade-off (false dichotomy)

Metac = content (implicit = explicit data)

. Different adversaries — different PETs

. No free lunch (privacy > utility)

. Layered protection (network + application)

ate

SRR

o o

20 Malware

Previous Attacks vs. Malware
« Previous: Expert adversary, manual coding/testing, deep understanding re-
quired
« Malware: Can be exploited by non-experts, automated, scales easily

20.1 Definition & Statistics
Malware = Malicious Software

« Software fulfilling author’s malicious intent
« Intentionally written to cause adverse effects

« Malware # Virus (virus is a KIND of malware)

20.2 Why the Rise?

« Homogeneous computing: Windows/Android = tempting targets
Clueless users: Many vulnerable targets

Unprecedented connectivity: Remote,
Profitable: Compromised computers sold, used for money/Bitcoin
Attacker engineering: Exploit new capabilities & less prepared entities

stributed attacks easier

20.3 Taxonomy

Need host Self-contained
2 | Self Virus Worm
g Non - Trojan, Rootkit, Spyware

Modern malware: Combines "the best' of categories to achieve purpose

20.4 Virus

ting .
Jrou "Befinition

Infects programs to monitor /steal/destroy

Modifies programs to include (possibly modified) copy of itself
Cannot survive without host

Permissions = host’s permissions (confused deputy!)
OS/hardware specific

Replication Spreads when host spreads (network/hardware): email, web, USB

Infection Types

« File: Overwrite (substitute) or Parasitic (append/modify)
« Macro: Overwrite macro in MS Office (Excel, Word) - needs exploit
« Boot: Most difficult & dangerous - infect boot partition

Defenses
« Antivirus Software

— Signatur

— Heuris

based (by hashes of known malware)
s (anomalies: spicious sections)

— Behavioral signatures (detect series of changes)
« Sandboxing: Run untrusted apps in restricted environment (VM)

instruction sequen
incorrect headers, s

20.5 Worm
Definition

« Self-replicating program using network to spread

+ Does NOT need host program

« Autonomous spread

« Email (needs human interaction) vs Network (automated)

Spreading Methods
« Email harvesting (address book, inbox, browser cache)
« Network enumeration, scanning (random/targeted)
Defenses Host-level:

« Protect from remote exploitation (stack protection, diversity)
« Antivirus (email-based worms)

Network-level:

« Limit outgoing connections

« Personal firewall (block unknown SMTP)

« Intrusion Detection Systems (IDS)

« Heterogeneous systems (different OS/programs)

20.6 Intrusion Detection Systems (IDS)

Host-based
Process on host
Local malware

Network-based
Network appliance
All traffic

Location
Detects

Signature-based Anomaly-based

Method Known patterns Behavior different
from legitimate

Pro Low false alarms Adapts to new attacks

Con Needs updates, can't | High false alarms

find new

20.7 Trojan Horse
Definition
« Appears to perform desirable function BUT performs undisclosed malicious ac-
tivities
« Requires users to explicitly run program
« Cannot replicate

Activities

« Spy on sensitive data (spyware, keylogger)

« Allow remote access (backdoor)

« Base for further attacks (mail relay for spam)
« Damage routines (corrupt files)

Defenses Sign programs? Train users? Least privilege principle!

20.8 Rootkit

Definition
« Adversary-controlled code deep within TCB
« Hides presence by modifying OS

« Installed after system compromise
« Difficult to detect

Capabilities
« Replace system programs with trojaned versions
« Modify kernel data structures (hide processes/files/network)
« Allow adversary to return later

Defense Integrity checkers (user/kernel level) - difficult!

20.9 Backdoor

Definition: Hidden functionality bypassing security mechanism

Trust Problem

« Can audit program source
« But what if compiler is malicious?

spect ALL programs down to first compiler!
« "Reflections on Trusting Trust' (Thompson, 1934)

« Chain of reasoning

20.10 Botnets

Definition Millions of compromised hosts ('zombies"/"bots') under control of single
entity

Command & Control (C&C): System to track bots and send commands

Key: Attacks at scale!

20.11 Botnet Topologies

20.11.1 Star Topology

« Central C&C server

« All bots connect to C&C

« Problem: C&C = single point of failure

« Violates least common mechanism principle

20.11.2 P2P Topology
« No central C&C

« Bots connect to each other
« Problems:
— Difficult management (join/leave?)
— Vulnerable to Sybil attacks (too many bots taken over)

20.11.3 Hybrid

Combines star + P2P: bots connect to P2P network of servers

20.12 Monetizing Botnets

Rental: "Pay to use my botnet"

DDoS extortion: 'Pay or I take down your business"
Bulk traffic: "Pay to boost website visits'

Click fraud: Simulate ad clicks for revenue
Ransomware distribution: 'l encrypted your drive'
Spam/advertising: Leave comments across web
Bitcoin mining

20.13 Botnet Defenses

« Attack C&C infrastructure:
— Take communication channel offline
— Hijack/poison DNS (route to black hole)
« Honeypots: Vulnerable system to attract attackers, study behavior in con-
trolled environment

20.14 Key Takeaways

. Malware = intentionally malicious software

an exploit (unlike previous attacks)

Many types: virus (needs host), worm (self-replicating), trojan (disguised), rootkit
(OS-level), backdoor (hidden access)

o~

. Non-exper

w

IS

. Modern malware combines multiple t;

. Defenses: antivirus (signatures/heuristics/behavioral), IDS (host /network, signa-
ture/anomaly), sandboxing, integrity checkers

. Botnets = attacks at scale (millions of compromised hosts)

. Topologies: Star (single C&C, single point of failure), P2P (no C&C, Sybil vul-
nerable), Hybrid (both)

. Profitable: rental, DDoS, click fraud, ransomware, Bitcoin mining

=

~1

»

	Definition and Basics
	Computer Security Definition
	Properties
	Security Policy
	Resourced Strategic Adversary
	Adversary Vocabulary
	Securing a System

	Security Mechanisms
	Eight Base Mechanisms

	Access Control
	Discretionary Access Control (DAC)
	Access Control Matrix
	Access Control Lists (ACLs)
	Capabilities
	Role-Based Access Control (RBAC)
	Group-Based Access Control
	Ambient Authority & Confused Deputy Problem
	Linux (UNIX) Access Control

	Mandatory Access Control (MAC)
	Bell-LaPadula (BLP) Model
	BIBA Model
	Chinese Wall Model

	Applied Cryptography
	Core Goal
	Hardness & Key Space
	Key Terms

	Adversary Types
	Passive Eavesdropper
	Known Plaintext Attack (KPA)
	Chosen Plaintext Attack (CPA)
	Side-Channel Attacks

	One-Time Pad (OTP)
	Principle
	Conditions for Perfect Secrecy
	Integrity Flaw
	Practical Limitation

	Stream Ciphers
	KSG Principle
	Idea
	Properties
	Pros / Cons
	Attacks & Flaws

	Public Key Cryptography
	Diffie–Hellman Key Exchange
	Security & Limits

	Authenticity
	Public Key Cryptography
	Digital Signatures
	Hash-Based Signing
	Hash Functions

	Block Ciphers
	Principle
	Goal & Limitation
	Block Cipher Modes
	ECB – Electronic Code Book
	CBC – Cipher Block Chaining
	CTR – Counter Mode
	Summary

	Authenticated Encryption & Integrity
	Why Authentication Matters
	MAC – Message Authentication Code
	Authenticated Encryption (AE)
	Why Encrypt-then-MAC is Best

	Public Key Infrastructure (PKI)
	The Key Distribution Problem
	Certificates & Certificate Authorities (CA)
	Certificate Chains & Trust Hierarchy
	PKI Security Properties

	Password Security
	Storing Passwords
	Password Attacks
	Password Strength

	Man-in-the-Middle (MITM) Attack
	Diffie-Hellman Vulnerability
	Consequences

	Authentication (Detailed)
	Authentication Factors
	Secure Password Transfer
	Challenge-Response Protocol
	Password Storage
	Biometric Authentication
	Time-Based One-Time Passwords (TOTP)
	Two-Factor Authentication (2FA)

	Network Security
	Four Network Security Properties
	ARP Spoofing
	DNS Spoofing
	BGP Hijacking
	TCP Session Hijacking
	TLS (Transport Layer Security)
	Denial of Service (DoS)
	Firewalls

	Web Security
	HTTP Basics
	Same Origin Policy (SOP)
	SQL Injection
	Cross-Site Scripting (XSS)
	Cross-Site Request Forgery (CSRF)
	Command Injection

	Software Security
	Memory Layout
	Buffer Overflow
	Format String Vulnerability
	Use-After-Free
	Mitigations
	Fuzzing
	Sanitizers

	Privacy
	Definitions
	Privacy IS a Security Property
	Three Categories of Privacy Enhancing Technologies (PETs)
	Category 1: Social Circle Adversary
	Category 2: Institutional Privacy (GDPR)
	Category 3: Anti-Surveillance (Network-Level)

	Metadata & Traffic Analysis
	End-to-End Encryption
	Anonymous Communications
	Use Cases
	Abstract Model

	Tor (The Onion Router)
	Application-Layer Anonymity
	Anonymous Credentials (Attribute-Based)

	Other PETs
	Privacy Quantification
	Key Principles

	Malware
	Definition & Statistics
	Why the Rise?
	Taxonomy
	Virus
	Worm
	Intrusion Detection Systems (IDS)
	Trojan Horse
	Rootkit
	Backdoor
	Botnets
	Botnet Topologies
	Star Topology
	P2P Topology
	Hybrid

	Monetizing Botnets
	Botnet Defenses
	Key Takeaways

